Proposed corrections to IEC 60050-561:2014

In the process of converting the mathematical equations in the Electropedia from images to MathML, the following errors in IEC 60050-561:2014 have been detected.

The current change request has been agreed with TC 49, *Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection.*

VT 60050 members are invited to comment individually on each of the proposals below.

Editorial corrections

E1) 561-03-02: It is proposed to correct to italic type the subscript "k" in the expression

 Y_k are the average fractional frequency fluctuations obtained sequentially,

since "k" is a variable.

E2) 561-06-07 and 561-06-08: It is proposed to correct to italic type the subscript "T" to $^{\varepsilon}{}_{\rm T}$ and $l_{\rm T}$ since it represents the variable temperature "T".

Published version:	Proposed corrected version:
$TC\varepsilon = \frac{\varepsilon_{T} - \varepsilon_{ref}}{\varepsilon_{ref} (T - T_{ref})} \times 10^{6} \left[1 \times 10^{-6} / K \right]$	$TCarepsilon = rac{arepsilon_{T} - arepsilon_{ ext{ref}}}{arepsilon_{ ext{ref}} \left(T - T_{ ext{ref}} ight)} imes 10^6 \left[1 imes 10^{-6} / ext{K} ight]$
where	where
$arepsilon_{ ext{T}}$ is the permittivity at temperature T ;	ε_T is the permittivity at temperature T ;
Published version:	Proposed corrected version:
$\alpha = \frac{l_{T} - l_{ref}}{l_{ref} (T - T_{ref})} \times 10^{6} \left[1 \times 10^{-6} / K \right]$	$lpha = rac{l_T \! - l_{ m ref}}{l_{ m ref} \left(T \! - T_{ m ref} ight)} imes 10^6 \left[1 imes 10^{-6} / { m K} ight]$
where	where
$l_{ m T}$ is the dimension at temperature T ;	l_T is the dimension at temperature T ;

Technical corrections

T1) 561-01-74: An error was introduced in the final standard during its preparation for publication, and the equation in the published version (which is the equation from 561-01-66) is incorrect and shall be replaced as shown below:

Published version:	Proposed corrected version:
$f_{ m P} \; = \; rac{1}{2\pi \; \sqrt{L_1 rac{C_1 C_0}{C_1 + C_0}}}$	$Q_{ m S} = rac{\omega_{ m r} L_1}{R_1}$

T2) 561-05-03, Note 1 to entry: In English, it is proposed to correct the word "exited" to "excited".

In the following formula, it is proposed to correct the presentation of "a" and "i" to italic subscripts.

Published version:	Proposed corrected version:
$k = \sqrt{rac{U\mathrm{a}}{U\mathrm{i}}}$	$m{k} = \sqrt{rac{U_a}{U_i}}$

T3) 561-06-03: For conformity with Note 2 to IEV 121-12-14:

Note 2 – Generally $\underline{\varepsilon}_{\Gamma}$ is expressed as $\underline{\varepsilon}_{\Gamma} = \varepsilon'_{\Gamma}$ - $j\varepsilon''_{\Gamma}$ where ε'_{Γ} is the real relative permittivity and ε''_{Γ} is the dielectric loss index which represents dielectric losses.

it is proposed to add the subscript "r" to arepsilon' and arepsilon'' in the equations:

Published version:	Proposed corrected version:
Note 1 to entry: The relative complex permittivity $\underline{\boldsymbol{\varepsilon}}_{\boldsymbol{\Gamma}}$ is defined as	Note 1 to entry: The relative complex permittivity $\underline{\varepsilon}_{\Gamma}$ is defined as
$\underline{\varepsilon}_{r} = \varepsilon' - j\varepsilon'', \ \varepsilon' = Re(\underline{\varepsilon}_{r}), \ \varepsilon'' = Im(\underline{\varepsilon}_{r})$	$\underline{\varepsilon}_{\mathrm{r}} = \varepsilon'_{\mathrm{r}} - \mathrm{j}\varepsilon''_{\mathrm{r}}, \varepsilon'_{\mathrm{r}} = \mathrm{Re}\left(\varepsilon_{\mathrm{r}}\right), \varepsilon''_{\mathrm{r}} = \mathrm{Im}\left(\varepsilon_{\mathrm{r}}\right)$
where	where
ε' is the dielectric constant;	$arepsilon'_{ extsf{T}}$ is the dielectric constant;
$arepsilon^{\prime\prime}$ is the dielectric loss of the material.	$arepsilon''_{ extsf{T}}$ is the dielectric loss of the material.

Remark: In 561-06-05 and 561-06-06, ϵ represents permittivity (IEV 561-05-12), and thus the subscript is not necessary.