IEVref:113-07-61ID:
Language:frStatus: Standard
Term: espace-temps plat, m
Synonym1:
Synonym2:
Synonym3:
Definition: espace-temps dans lequel le tenseur métrique pour des composantes réelles x _ _ :=( x 1 , x 2 , x 3 , x 4 =ct) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaWqaaeaacaWG4baaai aacQdacqGH9aqpcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaa WcbaGaaG4maaqabaGccaGGSaGaamiEamaaBaaaleaacaaI0aaabeaa kiabg2da9iaadogacaWG0bGaaiykaaaa@43E9@ peut être exprimé comme un tenseur diagonal dont chaque composante diagonale prend une des valeurs 1 ou −1

EXEMPLE  Un tenseur métrique g μ λ =0 pour μλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaKiVdiabgcMi5kaajU 7aaaa@3763@ , g 11 = g 22 = g 33 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aIXaGaaGymaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaaikdacaaI Yaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaG4maiaaiodaaeqaaO Gaeyypa0JaaGymaaaa@3EA4@ , et g 44 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aI0aGaaGinaaqabaGccqGH9aqpcqGHsislcaaIXaaaaa@3855@ décrit un espace-temps pseudo-euclidien plat. Un sous-espace 3D de cet espace-temps pour μ, λ=13 est un espace euclidien plat.

Note 1 à l’article: La relativité restreinte est basée sur l’espace-temps décrit en exemple.


Publication date:
Source
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: