IEVref:
113-07-60
ID:
Language:
fr
Status:
Standard
Term:
tenseur métrique, m
Synonym1:
Synonym2:
Synonym3:
Definition:
tenseur du deuxième ordre
symétrique qui définit les propriétés géométriques de l’
espace-temps
par la relation
d
s
2
=
∑
μ
,
ν
g
μ
ν
d
x
μ
d
x
ν
, où
d
s
2
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaGaciizaiaadohadaahaa Wcbeqaaiaaikdaaaaaaa@3671@
est un
carré d’intervalle d’espace-temps
et
d
x
μ
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaciizaiaadIhadaahaa WcbeqaaiaajY7aaaaaaa@3667@
,
d
x
ν
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaiizaiaadIhadaahaa Wcbeqaaiaaj27aaaaaaa@3666@
sont les composantes d’un
quadrivecteur déplacement
quasi infinitésimal
Publication
date
:
Source
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5:
tenseur du deuxième ordre
symétrique qui définit les propriétés géométriques de l’
espace-temps
par la relation
d
s
2
=
∑
μ
,
ν
g
μ
ν
d
x
μ
d
x
ν
, où
d
s
2
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaGaciizaiaadohadaahaa Wcbeqaaiaaikdaaaaaaa@3671@
est un
carré d’intervalle d’espace-temps
et
d
x
μ
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaciizaiaadIhadaahaa WcbeqaaiaajY7aaaaaaa@3667@
,
d
x
ν
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaiizaiaadIhadaahaa Wcbeqaaiaaj27aaaaaaa@3666@
sont les composantes d’un
quadrivecteur déplacement
quasi infinitésimal