IEVref:102-03-41ID:
Language:frStatus: backup
Term: produit tensoriel (de deux vecteurs), m
Synonym1:
Synonym2:
Synonym3:
Definition: pour deux vecteurs U et V d'un espace euclidien à n dimensions, tenseur du deuxième ordre défini par la forme bilinéaire f(X,Y)=(UX)(VY) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaaC iwaiaabYcacaaMe8UaaCywaiaacMcacqGH9aqpcaGGOaGaaCyvaiab gwSixlaahIfacaGGPaGaaiikaiaahAfacqGHflY1caWHzbGaaiykaa aa@4ADC@ , où X et Y sont des vecteurs quelconques du même espace

NOTE 1 La forme bilinéaire peut être représentée par f( X,Y )=( i U i X i )( j V j Y j )= ij U i V j X i Y j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamOzaOWaae WaaeaacaWHybGaaiilaiaahMfaaiaawIcacaGLPaaajugqbiabg2da 9OWaaeWaaeaadaaeqbqaaiaadwfadaWgaaWcbaGaamyAaaqabaGcca WGybWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgaaeqaniabggHiLdaa kiaawIcacaGLPaaadaqadaqaamaaqafabaGaamOvamaaBaaaleaaca WGQbaabeaakiaadMfadaWgaaWcbaGaamOAaaqabaaabaGaamOAaaqa b0GaeyyeIuoaaOGaayjkaiaawMcaaiabg2da9maaqafabaGaamyvam aaBaaaleaacaWGPbaabeaaaeaacaWGPbGaamOAaaqab0GaeyyeIuoa kiaadAfadaWgaaWcbaGaamOAaaqabaGccaWGybWaaSbaaSqaaiaadM gaaeqaaOGaamywamaaBaaaleaacaWGQbaabeaaaaa@5AC2@ en fonction des coordonnées des vecteurs. Le produit tensoriel est donc le tenseur de coordonnées T ij = U i V j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadsfadaWgaaWcba qcLboacaWGPbGaamOAaaWcbeaakiabg2da9KqzafGaamyvaOWaaSba aSqaaKqzGdGaamyAaaWcbeaajugqbiaadAfakmaaBaaaleaajug4ai aadQgaaSqabaaaaa@4626@ .

NOTE 2 Le produit tensoriel est noté UV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHxkcXca WHwbaaaa@3C93@ ou UV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacaWHwbaaaa@3A8A@ .


Publication date:2007-08
Source
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: