Queries, comments, suggestions? Please contact us.



Area Mathematics - Functions / Distributions

IEV ref103-03-04

Symbol
sgn

en
signum
function of a real variable equal to –1 for all negative values of the variable, +1 for all positive values and 0 for the zero value

Note 1 to entry: The signum can be generalized to complex variables as sgn z _ = z _ | z _ | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaKqzaeGaci4CaiaacE gacaGGUbGaaGjbVRWaaWaaaeaacaWG6baaaiabg2da9maalaaabaWa aWaaaeaacaWG6baaaaqaamaaemaabaWaaWaaaeaacaWG6baaaaGaay 5bSlaawIa7aaaaaaa@418F@ for z0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaiaadQhacqGHGjsUju gabiaaicdaaaa@393D@ and sgn0=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaKqzaeGaci4CaiaacE gacaGGUbGaaGjbVlaaicdakiabg2da9KqzaeGaaGimaaaa@3D13@ .


fr
signum, m
fonction signe, f
fonction d'une variable réelle ayant la valeur –1 pour toute valeur négative de la variable, +1 pour toute valeur positive et 0 lorsque la variable est nulle

Note 1 à l'article: Le signum peut être généralisé à des variables complexes: sgn z _ = z _ | z _ | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaKqzaeGaci4CaiaacE gacaGGUbGaaGjbVRWaaWaaaeaacaWG6baaaiabg2da9maalaaabaWa aWaaaeaacaWG6baaaaqaamaaemaabaWaaWaaaeaacaWG6baaaaGaay 5bSlaawIa7aaaaaaa@418F@ pour z0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaiaadQhacqGHGjsUju gabiaaicdaaaa@393D@ et sgn0=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaKqzaeGaci4CaiaacE gacaGGUbGaaGjbVlaaicdakiabg2da9KqzaeGaaGimaaaa@3D13@ .


ar
…..

de
Signumfunktion, f
Signum, n

es
signo

it
funzione segno, segno

ja
シグナム

pl
funkcja signum
signum

pt
signum

sr
сигнум, м јд

sv
signum

zh
正负号函数

Publication date: 2009-12
Copyright © IEC 2017. All Rights Reserved.