Queries, comments, suggestions? Please contact us.



Area Mathematics - Functions / Means

IEV ref103-02-01

en
mean value
mean
arithmetic mean
average
arithmetic average
quantity representing the quantities in a finite set or in an interval,

  1. for n quantities x 1 , x 2 , x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeGaciWaamGadaGadeaabaGaaqaaaOqaaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaaGjbVlaadIhadaWgaaWcbaGaaGOmaaqa baGccaGGSaGaaGjbVlaaykW7cqWIMaYscaaMc8UaaGPaVlaaysW7ca WG4bWaaSbaaSqaaiaad6gaaeqaaaaa@4713@ , by the quotient of the sum of the quantities by n:

    X ¯ = 1 n ( x 1 + x 2 ++ x n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeGaciWaamGadaGadeaabaGaaqaaaOqaamaanaaabaGaamiwaa aacqGH9aqpdaWcaaqaaKqzafGaaGymaaGcbaGaamOBaaaacaGGOaGa amiEamaaBaaaleaajug4aiaaigdaaSqabaGccqGHRaWkcaWG4bWaaS baaSqaaKqzGdGaaGOmaaWcbeaakiabgUcaRiaaykW7caaMe8UaaGPa VlablAciljaaykW7caaMc8UaaGjbVlabgUcaRiaadIhadaWgaaWcba GaamOBaaqabaGccaGGPaaaaa@50D7@

  2. for a quantity x depending on a variable t, by the integral of the quantity taken between two given values of the variable, divided by the difference of the two values:

    X ¯ = 1 t 2 t 1 t 1 t 2 x(t)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdi9qqqj=hEeeu0lXdbb a9frFj0xb9Lqpepeea0xd9s8qiYRWxGi6xij=hbba9q8aq0=yq=He9 q8qiLsFr0=vr0=vr0db8meaabaGacmGadiWaaiWabaabaiaafaaake aadaqdaaqaaiaadIfaaaGaeyypa0ZaaSaaaeaajugqbiaaigdaaOqa aiaadshadaWgaaWcbaqcLboacaaIYaaaleqaaOGaeyOeI0IaamiDam aaBaaaleaajug4aiaaigdaaSqabaaaaOWaa8qmaeaacaWG4bGaaiik aiaadshacaGGPaqcLbuacaGGKbGccaWG0baaleaacaaMi8UaamiDam aaBaaameaacaaIXaaabeaaaSqaaiaayIW7caWG0bWaaSbaaWqaaiaa ikdaaeqaaaqdcqGHRiI8aaaa@537A@

Note 1 to entry: The mean value of a periodic quantity is usually taken over an integration interval the range of which is the period multiplied by a natural number.

Note 2 to entry: The mean value of the quantity x may be denoted by X ¯ MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaanaaabaGaamiwaaaaaaa@363B@ , by ⟨X⟩, or by Xa. Subscripts ar, av and moy are also used.

Note 3 to entry: The adjective "arithmetic" is only used to qualify the terms "mean" and "average" in order to distinguish them from the terms "geometric mean" and "geometric average", as well from "harmonic mean" and "harmonic average".

Note 4 to entry: The mean value can be generalized for a function of n variables, e.g. with a surface integral or an integral over a three-dimensional domain divided by the corresponding area or volume. See the examples in IEC 60050-102.


fr
valeur moyenne, f
moyenne, f
valeur moyenne arithmétique, f
moyenne arithmétique
grandeur représentant les grandeurs d’un ensemble fini ou d’un intervalle,

  1. pour n grandeurs x 1 , x 2 , x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeGaciWaamGadaGadeaabaGaaqaaaOqaaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaaGjbVlaadIhadaWgaaWcbaGaaGOmaaqa baGccaGGSaGaaGjbVlaaykW7cqWIMaYscaaMc8UaaGPaVlaaysW7ca WG4bWaaSbaaSqaaiaad6gaaeqaaaaa@4713@ , par le quotient de la somme des grandeurs par n:

    X ¯ = 1 n ( x 1 + x 2 ++ x n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeGaciWaamGadaGadeaabaGaaqaaaOqaamaanaaabaGaamiwaa aacqGH9aqpdaWcaaqaaKqzafGaaGymaaGcbaGaamOBaaaacaGGOaGa amiEamaaBaaaleaajug4aiaaigdaaSqabaGccqGHRaWkcaWG4bWaaS baaSqaaKqzGdGaaGOmaaWcbeaakiabgUcaRiaaykW7caaMe8UaaGPa VlablAciljaaykW7caaMc8UaaGjbVlabgUcaRiaadIhadaWgaaWcba GaamOBaaqabaGccaGGPaaaaa@50D7@

  2. pour une grandeur x fonction de la variable t, par le quotient de l'intégrale de la grandeur entre deux valeurs données de cette variable par la différence des deux valeurs:

    X ¯ = 1 t 2 t 1 t 1 t 2 x(t)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdi9qqqj=hEeeu0lXdbb a9frFj0xb9Lqpepeea0xd9s8qiYRWxGi6xij=hbba9q8aq0=yq=He9 q8qiLsFr0=vr0=vr0db8meaabaGacmGadiWaaiWabaabaiaafaaake aadaqdaaqaaiaadIfaaaGaeyypa0ZaaSaaaeaajugqbiaaigdaaOqa aiaadshadaWgaaWcbaqcLboacaaIYaaaleqaaOGaeyOeI0IaamiDam aaBaaaleaajug4aiaaigdaaSqabaaaaOWaa8qmaeaacaWG4bGaaiik aiaadshacaGGPaqcLbuacaGGKbGccaWG0baaleaacaaMi8UaamiDam aaBaaameaacaaIXaaabeaaaSqaaiaayIW7caWG0bWaaSbaaWqaaiaa ikdaaeqaaaqdcqGHRiI8aaaa@537A@

Note 1 à l'article: La valeur moyenne d'une grandeur périodique est généralement prise sur un intervalle d'intégration dont l’étendue est le produit de la période par un entier naturel.

Note 2 à l'article: La valeur moyenne de la grandeur x est représentée par X ¯ MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaanaaabaGaamiwaaaaaaa@363B@ , par ⟨X⟩ ou par Xa. Les indices ar, av et moy sont aussi utilisés.

Note 3 à l'article: L'adjectif «arithmétique» n'est employé pour qualifier les termes «moyenne» et «valeur moyenne» que pour les distinguer des termes «moyenne géométrique» et «valeur moyenne géométrique», ainsi que des termes «moyenne harmonique» et «valeur moyenne harmonique».

Note 4 à l'article: La valeur moyenne peut se généraliser à une fonction de n variables, par exemple au moyen du quotient d'une intégrale de surface par l’aire correspondante ou d’une intégrale étendue à un domaine tridimensionnel par le volume correspondant. Voir des exemples dans IEC 60050-102.


ar
القيمة المتوسطة
الوسط
الوسط الحسابى
المتوسط

de
Mittelwert, m
arithmetischer Mittelwert, m

es
valor medio

it
valore medio
media
media aritmetica

ja
平均
平均値
算術平均

pl
średnia arytmetyczna
wartość średnia
średnia

pt
valor médio
média
valor médio aritmético
média aritmética

sr
средња вредност, ж јд
аритметичка средина, м јд
просек, м јд
аритметички просек, м јд

sv
artimetiskt medelvärde
medelvärde

zh
平均值
平均
算术平均值

Publication date: 2017-07
Copyright © IEC 2017. All Rights Reserved.