Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-40

en
tensor quantity
quantity Q which can be represented by a tensor of the second order T multiplied by a scalar quantity q

Q=qT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqadKqzGfGaa8xuai abg2da9iaadghacaWFubaaaa@39CD@

Note 1 to entry: A tensor quantity often describes a linear transformation of a vector quantity U into a vector quantity V:

V i = j Q ij U j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAfadaWgaaWcba GaamyAaaqabaGccqGH9aqpdaaeqbqaaiaadgfadaWgaaWcbaGaamyA aiaadQgaaeqaaaqaaiaadQgaaeqaniabggHiLdGccaWGvbWaaSbaaS qaaiaadQgaaeqaaaaa@43B7@

Note 2 to entry: The expression of a tensor quantity in terms of its components is similar to the expression of vector quantities (see Note 1 to entry in IEV 102-03-22). Examples of tensor quantities are the permittivity and the permeability in anisotropic media, see IEC 60050-121.

Note 3 to entry: Operations defined for tensors apply to tensor quantities.


fr
grandeur tensorielle, f
grandeur Q qui peut être représentée comme le produit d'un tenseur du deuxième ordre T par une grandeur scalaire q:

Q=qT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqadKqzGfGaa8xuai abg2da9iaadghacaWFubaaaa@39CD@

Note 1 à l'article: Une grandeur tensorielle décrit souvent une transformation linéaire d'une grandeur vectorielle U en une grandeur vectorielle V

V i = j Q ij U j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAfadaWgaaWcba GaamyAaaqabaGccqGH9aqpdaaeqbqaaiaadgfadaWgaaWcbaGaamyA aiaadQgaaeqaaaqaaiaadQgaaeqaniabggHiLdGccaWGvbWaaSbaaS qaaiaadQgaaeqaaaaa@43B7@

Note 2 à l'article: La représentation des grandeurs tensorielles en fonction de leurs composantes est analogue à celle des grandeurs vectorielles (voir la Note 1 à l’article dans IEV 102-03-22). Des exemples de grandeurs tensorielles sont la permittivité et la perméabilité dans les milieux anisotropes (voir IEC 60050-121).

Note 3 à l'article: Les opérations définies pour les tenseurs s'appliquent aux grandeurs tensorielles.


de
Tensorgröße, f

es
magnitud tensorial

ja
テンソル量

pl
wielkość tensorowa

pt
grandeza tensorial

sr
тензорска величина, ж јд

sv
tensorstorhet

zh
张量量

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.