Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-39

en
tensor of the second order
tensor
bilinear form defined for any pair of vectors of an n-dimensional Euclidean vector space

Note 1 to entry: For a given orthonormal base, a tensor T of the second order can be represented by n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamOBaOWaaW baaSqabeaajug4aiaaikdaaaaaaa@3CAF@ components T ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamivaOWaaS baaSqaaKqzGdGaamyAaiaadQgaaSqabaaaaa@3DC1@ , generally presented in the form of a square matrix, such that T attributes to the pair of vectors U and V the scalar i,j=1 n T ij U i V j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaqahabaGaamivam aaBaaaleaacaWGPbGaamOAaaqabaaabaGaamyAaiaacYcacaWGQbGa eyypa0tcLboacaaIXaaaleaacaWGUbaaniabggHiLdGccaWGvbWaaS baaSqaaiaadMgaaeqaaOGaamOvamaaBaaaleaacaWGQbaabeaaaaa@487E@ , where U i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba GaamyAaaqabaaaaa@3AC1@ and V j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAfadaWgaaWcba GaamOAaaqabaaaaa@3AC3@ are the coordinates of vectors U and V.

Note 2 to entry: A tensor of the second order can be defined by a bilinear form applied to two vectors (covariant tensor), to two linear forms (contravariant tensor), or to a vector and a linear form (mixed tensor). This distinction is not necessary for a Euclidean space. It is also possible to generalize to tensors of order n defined by n-linear forms and for which the components have n indices. Tensors of order 1 are considered as vectors and tensors of order 0 are considered as scalars.

Note 3 to entry: A tensor is indicated by a letter symbol in bold-face sans-serif type or by two arrows above a letter symbol: T or T ou T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiqadsfagaWcgaWcaa aa@39C9@ . The tensor T with components T ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamivaOWaaS baaSqaaKqzGdGaamyAaiaadQgaaSqabaaaaa@3DC1@ can be denoted ( T ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaiikaiaads fakmaaBaaaleaajug4aiaadMgacaWGQbaaleqaaKqzafGaaiykaaaa @3FC9@ .

Note 4 to entry: A complex tensor T is defined by a real part and an imaginary part: T=A+jB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqadKqzGeGaa8hvaO Gaeyypa0tcLbsacaWFbbGccqGHRaWkjugibiaacQgacaWFcbaaaa@3C4C@ where A and B are real tensors.


fr
tenseur du deuxième ordre, m
tenseur, m
forme bilinéaire définie pour tout couple de vecteurs d'un espace vectoriel euclidien à n dimensions

Note 1 à l'article: Pour une base orthonormée donnée, un tenseur T du deuxième ordre peut être représenté par n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamOBaOWaaW baaSqabeaajug4aiaaikdaaaaaaa@3CAF@ coordonnées T ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamivaOWaaS baaSqaaKqzGdGaamyAaiaadQgaaSqabaaaaa@3DC1@ , généralement disposées sous la forme d'une matrice carrée, telles que T attribue au couple de vecteurs U et V le scalaire i,j=1 n T ij U i V j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaqahabaGaamivam aaBaaaleaacaWGPbGaamOAaaqabaaabaGaamyAaiaacYcacaWGQbGa eyypa0tcLboacaaIXaaaleaacaWGUbaaniabggHiLdGccaWGvbWaaS baaSqaaiaadMgaaeqaaOGaamOvamaaBaaaleaacaWGQbaabeaaaaa@487E@ , où U i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba GaamyAaaqabaaaaa@3AC1@ et V j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAfadaWgaaWcba GaamOAaaqabaaaaa@3AC3@ sont les coordonnées des vecteurs U et V.

Note 2 à l'article: On peut définir un tenseur du deuxième ordre par toute forme bilinéaire opérant sur deux vecteurs (tenseur covariant), sur deux formes linéaires (tenseur contravariant) ou sur un vecteur et une forme linéaire (tenseur mixte). Cette distinction n'est pas nécessaire pour un espace euclidien. On peut généraliser aussi à des tenseurs d'ordre n définis par des formes n-linéaires et dont les coordonnées ont n indices. Les tenseurs d'ordre 1 sont considérés comme des vecteurs et les tenseurs d'ordre 0 comme des scalaires.

Note 3 à l'article: Un tenseur est représenté par un symbole littéral en gras sans empattement ou par un symbole surmonté de deux flèches: T ou T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiqadsfagaWcgaWcaa aa@39C9@ . Le tenseur T de coordonnées T ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamivaOWaaS baaSqaaKqzGdGaamyAaiaadQgaaSqabaaaaa@3DC1@ peut être représenté par ( T ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaiikaiaads fakmaaBaaaleaajug4aiaadMgacaWGQbaaleqaaKqzafGaaiykaaaa @3FC9@ .

Note 4 à l'article: Un tenseur complexe T est défini par une partie réelle et une partie imaginaire: T=A+jB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqadKqzGeGaa8hvaO Gaeyypa0tcLbsacaWFbbGccqGHRaWkjugibiaacQgacaWFcbaaaa@3C4C@ A et B sont des tenseurs réels.


de
Tensor der zweiten Stufe, m
Tensor, m

es
tensor de segundo orden
tensor

ja
二階のテンソル
テンソル

pl
tensor drugiego rzędu
tensor

pt
tensor de segunda ordem

sr
тензор другог реда, м јд
тензор, м јд

sv
tensor
tensor av andra ordningen

zh
二阶张量
张量

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.