Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-29

en
angle, <between two vectors>
real number ϑ such that 0 ≤ ϑ ≤ π, the cosine of which is the ratio of the scalar product of two given real vectors U and V to the product of their magnitudes

ϑ=arccos UV |U||V| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg9akjabg2da9i aabggacaqGYbGaae4yaiaabogacaqGVbGaae4CamaalaaabaGaaCyv aiabgwSixlaahAfaaeaadaabdaqaaiaahwfaaiaawEa7caGLiWoacq GHflY1daabdaqaaiaahAfaaiaawEa7caGLiWoaaaaaaa@4BED@

Note 1 to entry: The angle of two vectors is always defined because the inequality | UV||U||V| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaemaabaGaaCyvai abgwSixlaahAfaaiaawEa7caGLiWoacqGHKjYOdaabdaqaaiaahwfa aiaawEa7caGLiWoacqGHflY1daabdaqaaiaahAfaaiaawEa7caGLiW oaaaa@4BF6@ is valid for the scalar product.


fr
angle, <de deux vecteurs> m
nombre réel ϑ tel que 0 ≤ ϑ ≤ π, dont le cosinus est le rapport du produit scalaire de deux vecteurs réels U et V donnés au produit de leurs normes

ϑ=arccos UV |U||V| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg9akjabg2da9i aabggacaqGYbGaae4yaiaabogacaqGVbGaae4CamaalaaabaGaaCyv aiabgwSixlaahAfaaeaadaabdaqaaiaahwfaaiaawEa7caGLiWoacq GHflY1daabdaqaaiaahAfaaiaawEa7caGLiWoaaaaaaa@4BED@

Note 1 à l'article: L'angle de deux vecteurs est toujours défini puisque le produit scalaire vérifie l'inégalité | UV||U||V| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaemaabaGaaCyvai abgwSixlaahAfaaiaawEa7caGLiWoacqGHKjYOdaabdaqaaiaahwfa aiaawEa7caGLiWoacqGHflY1daabdaqaaiaahAfaaiaawEa7caGLiW oaaaa@4BF6@ .


de
Winkel (zwischen zwei Vektoren), m

es
ángulo (de dos vectores)

ja
角, <2つのベクトルがなす>

pl
kąt (między dwoma wektorami)

pt
ângulo (de dois vectores)

sr
угао, <између два вектора> м јд

sv
vinkel (mellan två vektorer)

zh
夹角, <两个向量的>

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.