Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-28

en
orthonormal base
base consisting of orthonormal vectors

Note 1 to entry: The vectors of an orthonormal base are usually denoted by e 1 , e 2 ,..., e n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyzaOWaaS baaSqaaGqaaKqzGdGaa8xmaaWcbeaakiaabYcacaaMe8EcLbuacaWH LbGcdaWgaaWcbaqcLboacaWFYaaaleqaaOGaaeilaiaaysW7caqGUa GaaeOlaiaab6cacaqGSaGaaGjbVNqzafGaaCyzaOWaaSbaaSqaaiaa d6gaaeqaaaaa@4C34@ ; for a three-dimensional Cartesian coordinate system they are often denoted by e x , e y , e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyzaOWaaS baaSqaaiaadIhaaeqaaOGaaeilaiaaysW7jugqbiaahwgakmaaBaaa leaacaWG5baabeaakiaabYcacaaMe8EcLbuacaWHLbGcdaWgaaWcba GaamOEaaqabaaaaa@45CC@ or i,j,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahMgacaqGSaGaaG jbVlaahQgacaqGSaGaaGjbVlaahUgaaaa@401E@ .


fr
base orthonormée, f
base constituée de vecteurs orthonormés

Note 1 à l'article: On représente généralement les vecteurs d'une base orthonormée par e 1 , e 2 ,..., e n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyzaOWaaS baaSqaaGqaaKqzGdGaa8xmaaWcbeaakiaabYcacaaMe8EcLbuacaWH LbGcdaWgaaWcbaqcLboacaWFYaaaleqaaOGaaeilaiaaysW7caqGUa GaaeOlaiaab6cacaqGSaGaaGjbVNqzafGaaCyzaOWaaSbaaSqaaiaa d6gaaeqaaaaa@4C34@ ; dans un système de coordonnées cartésien à trois dimensions, on les représente souvent par e x , e y , e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyzaOWaaS baaSqaaiaadIhaaeqaaOGaaeilaiaaysW7jugqbiaahwgakmaaBaaa leaacaWG5baabeaakiaabYcacaaMe8EcLbuacaWHLbGcdaWgaaWcba GaamOEaaqabaaaaa@45CC@ ou i,j,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahMgacaqGSaGaaG jbVlaahQgacaqGSaGaaGjbVlaahUgaaaa@401E@ .


de
orthonormierte Basis, f

es
base ortonormal

ja
正規直交基底

pl
baza ortonormalna

pt
base ortonormal

sr
ортонормална база, ж јд

sv
ortonormal bas

zh
规范正交基

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.