Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-19

en
Euclidean space
real vector space or real point space for which a scalar product is defined for any two vectors

Note 1 to entry: The usual geometrical three-dimensional space is a Euclidean point space. Four-dimensional vectors used in special relativity are elements of a non-Euclidean point space because the scalar product of a vector by itself may be negative. Another example of non-Euclidean vector space is the set of n-bit words formed of the digits zero and one with addition modulo two, because the scalar product of a vector by itself can be zero for a non-zero vector.


fr
espace euclidien, m
espace vectoriel réel ou espace affine réel dans lequel un produit scalaire est défini pour tout couple de vecteurs

Note 1 à l'article: L'espace géométrique usuel à trois dimensions est un espace affine euclidien. Les vecteurs à quatre dimensions utilisés en relativité restreinte sont des éléments d'un espace affine non euclidien parce que le produit scalaire d'un vecteur par lui-même peut être négatif. Un autre exemple d'espace vectoriel non euclidien est l'ensemble des mots de n bits formés des chiffres zéro et un avec l'addition modulo deux. En effet le produit scalaire d'un vecteur par lui-même peut être nul sans que le vecteur soit nul.


de
euklidischer Vektorraum, m

es
espacio euclídeo

ja
ユークリッド空間

pl
przestrzeń euklidesowa

pt
espaço euclidiano

sr
Еуклидов простор, м јд

sv
euklidisk rymd

zh
欧几里得空间

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.