Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-09

en
coordinate, <of a vector>
any of the n scalars U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWGvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWGvbWaaSbaaSqaaiaad6gaaeqaaaaa@49CD@ in the representation of a vector U as a linear combination U 1 a 1 + U 2 a 2 +...+ U n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaCyyamaaBaaaleaajug4aiaa=fda aSqabaGccqGHRaWkcaWGvbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaaki aahggadaWgaaWcbaqcLboacaWFYaaaleqaaOGaey4kaSIaaiOlaiaa c6cacaGGUaGaey4kaSIaamyvamaaBaaaleaacaWGUbaabeaakiaahg gadaWgaaWcbaGaamOBaaqabaaaaa@4E2C@ of the base vectors a 1 , a 2 ,..., a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahggadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHHbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@49FD@

Note 1 to entry: The term "coordinate" is also used for the components of a position vector (see IEV 102-03-22).

Note 2 to entry: In English, the term "component" is sometimes used in this sense.


fr
coordonnée, <d'un vecteur> f
chacun des n scalaires U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWGvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWGvbWaaSbaaSqaaiaad6gaaeqaaaaa@49CD@ dans la représentation d'un vecteur U comme combinaison linéaire U 1 a 1 + U 2 a 2 +...+ U n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaCyyamaaBaaaleaajug4aiaa=fda aSqabaGccqGHRaWkcaWGvbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaaki aahggadaWgaaWcbaqcLboacaWFYaaaleqaaOGaey4kaSIaaiOlaiaa c6cacaGGUaGaey4kaSIaamyvamaaBaaaleaacaWGUbaabeaakiaahg gadaWgaaWcbaGaamOBaaqabaaaaa@4E2C@ des vecteurs de base a 1 , a 2 ,..., a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahggadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHHbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@49FD@

Note 1 à l'article: Le terme «coordonnée» est aussi employé pour les composantes d'un rayon vecteur (voir IEV 102-03-22).

Note 2 à l'article: En anglais, le terme «component» est parfois employé dans ce sens.


de
Koordinate (eines Vektors), f

es
coordenada (de un vector)

ja
座標, <ベクトルの>

pl
współrzędna (wektora)

pt
coordenada (de um vector)

sr
координата, <вектора> ж јд

sv
komponent (av en vektor)

zh
坐标, <向量的>

Publication date: 2008-08
Copyright © IEC 2017. All Rights Reserved.