Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-08

en
base, <in linear algebra>
basis
ordered set of n linearly independent vectors a 1 , a 2 ,..., a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahggadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHHbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@49FD@ in an n-dimensional vector space, which is chosen to express any vector U as a unique linear combination of these n vectors

U= U 1 a 1 + U 2 a 2 +...+ U n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGH9aqpca WGvbWaaSbaaSqaaGqaaKqzGdGaa8xmaaWcbeaakiaahggadaWgaaWc baqcLboacaWFXaaaleqaaOGaey4kaSIaamyvamaaBaaaleaajug4ai aa=jdaaSqabaGccaWHHbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaakiab gUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadwfadaWgaaWcbaGaam OBaaqabaGccaWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@5010@ , where U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWGvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWGvbWaaSbaaSqaaiaad6gaaeqaaaaa@49CD@ are scalars

Note 1 to entry: In an Euclidean or Hermitian vector space, an orthonormal base is generally chosen. In the vector space formed by a set of n-bit words (see Note 1 to entry in IEV 102-03-01, vector space) a base is the set of n-bit words having only one non-zero bit.

Note 2 to entry: Any vector of a base is called "base vector".


fr
base, <en algèbre linéaire> f
ensemble ordonné de n vecteurs linéairement indépendants a 1 , a 2 ,..., a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahggadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHHbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@49FD@ dans un espace vectoriel à n dimensions, choisi pour exprimer tout vecteur U comme combinaison linéaire unique de ces n vecteurs

U= U 1 a 1 + U 2 a 2 +...+ U n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGH9aqpca WGvbWaaSbaaSqaaGqaaKqzGdGaa8xmaaWcbeaakiaahggadaWgaaWc baqcLboacaWFXaaaleqaaOGaey4kaSIaamyvamaaBaaaleaajug4ai aa=jdaaSqabaGccaWHHbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaakiab gUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadwfadaWgaaWcbaGaam OBaaqabaGccaWHHbWaaSbaaSqaaiaad6gaaeqaaaaa@5010@ U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWGvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWGvbWaaSbaaSqaaiaad6gaaeqaaaaa@49CD@ sont des scalaires

Note 1 à l'article: Dans un espace euclidien ou hermitien, on choisit généralement une base orthonormée. Dans l'espace vectoriel formé par l'ensemble des mots de n bits (voir la Note 1 à l’article dans IEV 102-03-01, espace vectoriel), une base est constituée par l'ensemble des mots n'ayant qu'un seul bit non nul.

Note 2 à l'article: Tout vecteur d'une base est appelé «vecteur de base».


de
Basis (eines Vektorraums), n

es
base

ja

対数の底

pl
baza

pt
base

sr
база, ж јд
основа, ж јд

sv
vektorbas

zh

Publication date: 2017-07
Copyright © IEC 2017. All Rights Reserved.