Area Mathematics - General concepts and linear algebra / Vectors and tensors IEV ref 102-03-06 en linearly dependent, adj qualifies n vectors ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ where a linear combination such as ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ can be equal to zero even if not all scalar coefficients ${\alpha }_{\text{1}}\text{,}\text{\hspace{0.17em}}{\alpha }_{\text{2}}\text{,}\text{\hspace{0.17em}}\cdots \text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ are equal to zero fr linéairement dépendant, adj qualifie n vecteurs ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ lorsqu'une combinaison linéaire de la forme ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ peut être nulle même si tous les coefficients scalaires ${\alpha }_{\text{1}}\text{,}\text{\hspace{0.17em}}{\alpha }_{\text{2}}\text{,}\text{\hspace{0.17em}}\cdots \text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ ne sont pas nuls de linear abhängig, adj es linealmente dependiente ko 선형종속일차종속 ja 一次従属線形従属 pl liniowo zależny, adj pt linearmente dependente, adj sr линеарно зависан, придев sv linjärt beroende zh 线性相关的