Queries, comments, suggestions? Please contact us.

 Area Mathematics - General concepts and linear algebra / Vectors and tensors IEV ref 102-03-05 en linearly independent, adj qualifies n vectors ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ where a linear combination such as ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ cannot be equal to zero unless all scalar coefficients ${\alpha }_{1}\text{,}\text{\hspace{0.17em}}{\alpha }_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ are equal to zero fr linéairement indépendant, adj qualifie n vecteurs ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ lorsqu'une combinaison linéaire de la forme ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ ne peut être nulle que si tous les coefficients scalaires ${\alpha }_{1}\text{,}\text{\hspace{0.17em}}{\alpha }_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ sont nuls de linear unabhängig, adj es linealmente independiente ko 선형독립일차독립 ja 一次独立線形独立 pl liniowo niezależny, adj pt linearmente independente, adj sr линеарно независан, придев sv linjärt oberoende zh 线性无关的

 Publication date: 2017-07 Copyright © IEC 2018. All Rights Reserved.