Area Mathematics - General concepts and linear algebra / Vectors and tensors IEV ref 102-03-05 en linearly independent, adj qualifies n vectors ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ where a linear combination such as ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ cannot be equal to zero unless all scalar coefficients ${\alpha }_{1}\text{,}\text{\hspace{0.17em}}{\alpha }_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ are equal to zero fr linéairement indépendant, adj qualifie n vecteurs ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ lorsqu'une combinaison linéaire de la forme ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ ne peut être nulle que si tous les coefficients scalaires ${\alpha }_{1}\text{,}\text{\hspace{0.17em}}{\alpha }_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ sont nuls de linear unabhängig, adj es linealmente independiente ko 선형독립일차독립 ja 一次独立の pl liniowo niezależny, adj pt linearmente independente, adj sr линеарно независан, придев sv linjärt oberoende zh 线性无关的