Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-05

en
linearly independent, adj
qualifies n vectors U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHvbWaaSbaaSqaaiaad6gaaeqaaaaa@49D9@ where a linear combination such as α 1 U 1 + α 2 U 2 +...+ α n U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHnaaBaaale aaieaajug4aiaa=fdaaSqabaGccaWHvbWaaSbaaSqaaKqzGdGaa8xm aaWcbeaakiabgUcaRiabeg7aHnaaBaaaleaajug4aiaa=jdaaSqaba GccaWHvbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaakiabgUcaRiaac6ca caGGUaGaaiOlaiabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaaki aahwfadaWgaaWcbaGaamOBaaqabaaaaa@5057@ cannot be equal to zero unless all scalar coefficients α 1 , α 2 ,..., α n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHnaaBaaale aaieaajug4aiaa=fdaaSqabaGccaqGSaGaaGjbVlabeg7aHnaaBaaa leaajug4aiaa=jdaaSqabaGccaqGSaGaaGjbVlaab6cacaqGUaGaae OlaiaabYcacaaMe8UaeqySde2aaSbaaSqaaiaad6gaaeqaaaaa@4C1C@ are equal to zero

fr
linéairement indépendant, adj
qualifie n vecteurs U 1 , U 2 ,..., U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfadaWgaaWcba acbaqcLboacaWFXaaaleqaaOGaaeilaiaaysW7caWHvbWaaSbaaSqa aKqzGdGaa8NmaaWcbeaakiaabYcacaaMe8UaaeOlaiaab6cacaqGUa GaaeilaiaaysW7caWHvbWaaSbaaSqaaiaad6gaaeqaaaaa@49D9@ lorsqu'une combinaison linéaire de la forme α 1 U 1 + α 2 U 2 +...+ α n U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHnaaBaaale aaieaajug4aiaa=fdaaSqabaGccaWHvbWaaSbaaSqaaKqzGdGaa8xm aaWcbeaakiabgUcaRiabeg7aHnaaBaaaleaajug4aiaa=jdaaSqaba GccaWHvbWaaSbaaSqaaKqzGdGaa8NmaaWcbeaakiabgUcaRiaac6ca caGGUaGaaiOlaiabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaaki aahwfadaWgaaWcbaGaamOBaaqabaaaaa@5057@ ne peut être nulle que si tous les coefficients scalaires α 1 , α 2 ,..., α n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHnaaBaaale aaieaajug4aiaa=fdaaSqabaGccaqGSaGaaGjbVlabeg7aHnaaBaaa leaajug4aiaa=jdaaSqabaGccaqGSaGaaGjbVlaab6cacaqGUaGaae OlaiaabYcacaaMe8UaeqySde2aaSbaaSqaaiaad6gaaeqaaaaa@4C1C@ sont nuls

de
linear unabhängig, adj

es
linealmente independiente

ko
선형독립
일차독립

ja
一次独立
線形独立

pl
liniowo niezależny, adj

pt
linearmente independente, adj

sr
линеарно независан, придев

sv
linjärt oberoende

zh
线性无关的

Publication date: 2017-07
Copyright © IEC 2018. All Rights Reserved.