Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref102-03-01

en
vector space
linear space
for a given set of scalars, set of elements for which the sum of any two elements U and V and the product of any element and a scalar α are elements of the set, with the following properties:

  • U+V=V+U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkca WHwbGaeyypa0JaaCOvaiabgUcaRiaahwfaaaa@3F11@ ,
  • (U+V)+W=U+(V+W) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacaWHvbGaey 4kaSIaaCOvaiaacMcacqGHRaWkcaWHxbGaeyypa0JaaCyvaiabgUca RiaacIcacaWHwbGaey4kaSIaaC4vaiaacMcaaaa@4547@ , where W is also an element of the set,
  • there exists a neutral element for addition, called zero vector and denoted by 0, such that: U+0=U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkie qajugqbiaa=bdakiabg2da9iaahwfaaaa@3DE5@ ,
  • there exists an opposite (U) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacqGHsislca WHvbGaaiykaaaa@3BF1@ such that U+(U)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkca GGOaGaeyOeI0IaaCyvaiaacMcacqGH9aqpieqajugqbiaa=bdaaaa@4021@ ,
  • (α+β)U=αU+βU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacqaHXoqycq GHRaWkcqaHYoGycaGGPaGaaGPaVlaahwfaimaacqWF9aqpcqaHXoqy caaMc8UaaCyvaiabgUcaRiabek7aIjaaykW7caWHvbaaaa@4AAF@ , where β is also a scalar,
  • α(U+V)=αU+αV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHjaaykW7ca GGOaGaaCyvaiabgUcaRiaahAfacaGGPaacdaGae8xpa0JaeqySdeMa aGPaVlaahwfacqGHRaWkcqaHXoqycaaMc8UaaCOvaaaa@49EC@ ,
  • α(βU)=(αβ)U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHjaaykW7ca GGOaGaeqOSdiMaaGPaVlaahwfacaGGPaacdaGae8xpa0Jae8hkaGIa eqySdeMaaGPaVlabek7aIjaacMcacaaMc8UaaCyvaaaa@4B1A@ ,
  • 1U=U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqaaKqzafGaa8xmai aaykW7kiaahwfacqGH9aqpcaWHvbaaaa@3E8E@

Note 1 to entry: In the usual three-dimensional space, the directed line segments with a specified origin form an example of a vector space over real numbers. Another example, corresponding to the extended concept of scalar (see IEV 102-02-18, Note 1) is the set of n-bit words formed of the digits 0 and 1 with addition modulo two, where the set of scalars is the set of two elements 0 and 1 subject to Boolean algebra.


fr
espace vectoriel, m
pour un ensemble donné de scalaires, ensemble d'éléments dans lequel la somme de deux éléments quelconques U et V et le produit d'un élément quelconque par un scalaire α sont des éléments de l'ensemble, avec les propriétés suivantes:

  • U+V=V+U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkca WHwbGaeyypa0JaaCOvaiabgUcaRiaahwfaaaa@3F11@ ,
  • (U+V)+W=U+(V+W) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacaWHvbGaey 4kaSIaaCOvaiaacMcacqGHRaWkcaWHxbGaeyypa0JaaCyvaiabgUca RiaacIcacaWHwbGaey4kaSIaaC4vaiaacMcaaaa@4547@ , où W est aussi un élément de l'ensemble,
  • il existe un élément neutre pour l'addition, appelé vecteur nul et noté 0, tel que U+0=U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkie qajugqbiaa=bdakiabg2da9iaahwfaaaa@3DE5@ ,
  • il existe un opposé (U) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacqGHsislca WHvbGaaiykaaaa@3BF1@ tel que U+(U)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHRaWkca GGOaGaeyOeI0IaaCyvaiaacMcacqGH9aqpieqajugqbiaa=bdaaaa@4021@ ,
  • (α+β)U=αU+βU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaacIcacqaHXoqycq GHRaWkcqaHYoGycaGGPaGaaGPaVlaahwfaimaacqWF9aqpcqaHXoqy caaMc8UaaCyvaiabgUcaRiabek7aIjaaykW7caWHvbaaaa@4AAF@ , où β est aussi un scalaire,
  • α(U+V)=αU+αV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHjaaykW7ca GGOaGaaCyvaiabgUcaRiaahAfacaGGPaacdaGae8xpa0JaeqySdeMa aGPaVlaahwfacqGHRaWkcqaHXoqycaaMc8UaaCOvaaaa@49EC@ ,
  • α(βU)=(αβ)U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeg7aHjaaykW7ca GGOaGaeqOSdiMaaGPaVlaahwfacaGGPaacdaGae8xpa0Jae8hkaGIa eqySdeMaaGPaVlabek7aIjaacMcacaaMc8UaaCyvaaaa@4B1A@ ,
  • 1U=U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqaaKqzafGaa8xmai aaykW7kiaahwfacqGH9aqpcaWHvbaaaa@3E8E@

Note 1 à l'article: Dans l'espace usuel à trois dimensions, les segments orientés ayant une origine spécifiée constituent un espace vectoriel sur les nombres réels. Un autre exemple, correspondant à l'extension du concept de scalaire (voir IEV 102-02-18, Note 1), est l'ensemble des mots de n bits formés des chiffres 0 et 1 avec addition modulo deux, où l'ensemble de scalaires est l'ensemble des deux éléments 0 et 1 muni de l'algèbre de Boole.


de
Vektorraum, m

es
espacio vectorial

ja
ベクトル空間
線形空間

pl
przestrzeń wektorowa
przestrzeń liniowa

pt
espaço vectorial

sr
векторски простор, м јд
линеарни простор, м јд

sv
linjär rymd
vektorrymd

zh
向量空间
线性空间

Publication date: 2017-07
Copyright © IEC 2017. All Rights Reserved.