(Untitled) | (Untitled) | (Untitled) | (Untitled) | (Untitled) | Examples |

IEVref: | 103-04-03 | ID: | |

Language: | en | Status: Standard | |

Term: | inverse Fourier transform | ||

Synonym1: | |||

Synonym2: | |||

Synonym3: | |||

Symbol: | |||

Definition: | representation of a real or complex function f(t) of the real variable t by the integral transformation $f(t)=\frac{1}{2\pi}{\int}_{\text{\hspace{0.05em}}-\infty}^{\text{\hspace{0.05em}}+\infty}F(\omega ){\text{e}}^{\text{j}\omega t}\text{d}\omega$ where $F(\omega )$ is the Fourier transform of the function $f(t)$ and j is the imaginary unit | ||

Publication date: | 2009-12 | ||

Source: | |||

Replaces: | |||

Internal notes: | 2017-02-20: Editorial revisions in accordance with the information provided in C00020 (IEV 103) - evaluation. JGO | ||

CO remarks: | |||

TC/SC remarks: | |||

VT remarks: | |||

Domain1: | |||

Domain2: | |||

Domain3: | |||

Domain4: | |||

Domain5: |

$f(t)=\frac{1}{2\pi}{\int}_{\text{\hspace{0.05em}}-\infty}^{\text{\hspace{0.05em}}+\infty}F(\omega ){\text{e}}^{\text{j}\omega t}\text{d}\omega$

where $F(\omega )$ is the Fourier transform of the function $f(t)$ and j is the imaginary unit