(Untitled) (Untitled)(Untitled) (Untitled)(Untitled) (Untitled)(Untitled) (Untitled)(Untitled)Examples




IEVref:102-03-43ID:
Language:enStatus: Standard
Term: antisymmetric tensor
Synonym1:
Synonym2:
Synonym3:
Symbol:
Definition: tensor of the second order defined by a bilinear form such that f(U,V)=f(V,U) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaaC yvaiaabYcacaaMe8UaaCOvaiaacMcacqGH9aqpcqGHsislcaWGMbGa aiikaiaahAfacaqGSaGaaGjbVlaahwfacaGGPaaaaa@473A@

Note 1 to entry: The components of an antisymmetric tensor are such that T ij = T ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadsfadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0JaeyOeI0IaamivamaaBaaaleaa caWGQbGaamyAaaqabaaaaa@408E@ , and in particular T ii =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadsfadaWgaaWcba GaamyAaiaadMgaaeqaaOGaeyypa0tcLbsacaaIWaaaaa@3E07@ .

Note 2 to entry: An antisymmetric tensor defined on a three-dimensional space has three strict components which can be considered as the coordinates W 1 , W 2 , W 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadEfadaWgaaWcba qcLboacaaIXaaaleqaaOGaaeilaiaabccacaWGxbWaaSbaaSqaaKqz GdGaaGOmaaWcbeaakiaabYcacaqGGaGaam4vamaaBaaaleaajug4ai aaiodaaSqabaaaaa@44DC@ of an axial vector:

( 0 W 3 W 2 W 3 0 W 1 W 2 W 1 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaabmaabaqbaeqabm WaaaqaaiaaicdaaeaacaWGxbWaaSbaaSqaaiaaiodaaeqaaaGcbaGa eyOeI0Iaam4vamaaBaaaleaacaaIYaaabeaaaOqaaiabgkHiTiaadE fadaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaam4vamaaBaaa leaacaaIXaaabeaaaOqaaiaadEfadaWgaaWcbaGaaGOmaaqabaaake aacqGHsislcaWGxbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaaa aiaawIcacaGLPaaaaaa@4A36@

The axial vector associated with the antisymmetric tensor UVVU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHxkcXca WHwbGaeyOeI0IaaCOvaiabgEPielaahwfaaaa@4146@ is the vector product of the two vectors.


Publication date:2008-08
Source:
Replaces:
Internal notes:2017-02-20: Editorial revisions in accordance with the information provided in C00019 (IEV 102) - evaluation. JGO
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: