(Untitled) (Untitled)(Untitled) (Untitled)(Untitled) (Untitled)(Untitled) (Untitled)(Untitled)Examples




IEVref:103-04-07ID:
Language:enStatus: Standard
Term: inverse Laplace transform
Synonym1:
Synonym2:
Synonym3:
Symbol:
Definition: representation of a real or complex function f(t) of the real variable t by the integral transformation

f(t)= 1 2πj σj σ+j F(s) e st ds MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWaamGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaamiDaiaacMcacqGH9aqpdaWcaaqaaKqzafGaaGymaaGcbaqcLbuacaaIYaacdaGccqWFapaCjugqbiaabQgaaaGcdaWdXaqaaiaadAeacaGGOaGaam4CaiaacMcajugqbiGacwgakmaaCaaaleqabaGaam4CaiaayIW7caWG0baaaKqzafGaciizaOGaam4CaaWcbaGaaGjcVlabeo8aZjabgkHiTiaabQgacqGHEisPaeaacaaMi8Uaeq4WdmNaey4kaSIaaeOAaiabg6HiLcqdcqGHRiI8aaaa@5A59@

where F(s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAeacaGGOaGaam 4CaiaacMcaaaa@386E@ is the Laplace transform of the function f(t), σ is greater or equal to the abscissa of convergence of F(s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAeacaGGOaGaam 4CaiaacMcaaaa@386E@ and j is the imaginary unit


Publication date:2009-12
Source:
Replaces:
Internal notes:2017-02-20: Editorial revisions in accordance with the information provided in C00020 (IEV 103) - evaluation. JGO
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: